Saturday 19 May 2018

Livro exponencial em movimento médio


Média móvel O indicador técnico da média móvel mostra o valor médio do preço do instrumento por um determinado período de tempo. Quando se calcula a média móvel, uma média do preço do instrumento para este período de tempo. À medida que o preço muda, sua média móvel aumenta ou diminui. Existem quatro tipos diferentes de médias móveis: Simples (também conhecido como Aritmética), Exponencial. Alisado e ponderado. A média móvel pode ser calculada para qualquer conjunto de dados seqüenciais, incluindo preços de abertura e fechamento, preços mais altos e mais baixos, volume de negócios ou outros indicadores. Muitas vezes, é o caso quando se usam médias móveis duplas. A única coisa em que as médias móveis de diferentes tipos divergem consideravelmente umas das outras, é quando os coeficientes de peso, que são atribuídos aos dados mais recentes, são diferentes. No caso de nós estarmos falando de Simple Moving Average. Todos os preços do período de tempo em questão são de valor igual. A média móvel exponencial e a média móvel ponderada linear atribuem mais valor aos preços mais recentes. A maneira mais comum de interpretar a média móvel de preços é comparar sua dinâmica com a ação de preço. Quando o preço do instrumento sobe acima de sua média móvel, aparece um sinal de compra, se o preço cai abaixo da média móvel, o que temos é um sinal de venda. Este sistema de negociação, baseado na média móvel, não é projetado para fornecer entrada no mercado bem no seu ponto mais baixo, e sua saída diretamente no pico. Permite atuar de acordo com a seguinte tendência: comprar logo depois que os preços chegam ao fundo e vender logo depois que os preços atingiram seu pico. As médias móveis também podem ser aplicadas aos indicadores. É aí que a interpretação das médias móveis de indicadores é semelhante à interpretação das médias móveis de preços: se o indicador sobe acima de sua média móvel, isso significa que o movimento do indicador ascendente provavelmente continuará: se o indicador cai abaixo da média móvel, isso Significa que é provável que continue indo para baixo. Aqui estão os tipos de médias móveis no gráfico: Média móvel simples (SMA) Média móvel exponencial (EMA) Média móvel movimentada (SMMA) Média linear móvel ponderada (LWMA) Você pode testar os sinais comerciais deste indicador, criando um consultor especialista No MQL5 Wizard. Cálculo da média móvel simples (SMA) Simples, em outras palavras, a média móvel aritmetica é calculada resumindo os preços do fechamento do instrumento em um certo número de períodos únicos (por exemplo, 12 horas). Esse valor é então dividido pelo número desses períodos. SMA SUM (FECHAR (i), N) N SOM SUM FECHAR (i) período atual fechar preço N número de períodos de cálculo. Média de Movimento Exponencial (EMA) A média móvel suavizada exponencialmente é calculada pela adição de uma certa parcela do preço de fechamento atual ao valor anterior da média móvel. Com médias móveis movidas exponivelmente, os preços de fechamento mais recentes são de maior valor. A média móvel exponencial de porcentagem de P será semelhante a: EMA (CLOSE (i) P) (EMA (i - 1) (1 - P)) FECHAR (i) preço de fechamento atual EMA (i - 1) valor da Média Móvel De um período anterior P a porcentagem de uso do valor do preço. Média Mover Suavizada (SMMA) O primeiro valor dessa média móvel suavizada é calculado como a média móvel simples (SMA): SUM1 SUM (CLOSE (i), N) A segunda média móvel é calculada de acordo com esta fórmula: SMMA (i) (SMMA1 (N-1) FECHAR (i)) N As médias móveis sucessivas são calculadas de acordo com a fórmula abaixo: PREVSUM SMMA (i-1) N SMMA (i) (PREVSUM - SMMA (i-1) CLOSE (i)) N Soma sum SUM1 soma total dos preços de fechamento para N períodos é contado a partir da barra anterior PREVSUM suma alisada da barra anterior média SMMA (i-1) média movida da barra anterior SMMA (i) média lisa suavizada da barra atual (Exceto para o primeiro) FECHAR (i) preço de fechamento atual N período de suavização. Após as conversões aritméticas, a fórmula pode ser simplificada: SMMA (i) (SMMA (i-1) (N-1) FECHAR (i)) N Média linear móvel ponderada (LWMA) No caso da média móvel ponderada, os dados mais recentes são De mais valor do que mais dados iniciais. A média móvel ponderada é calculada multiplicando cada um dos preços de fechamento dentro da série considerada, por um certo coeficiente de peso: LWMA SUM (CLOSE (i) i, N) SUM (i, N) SUM SUM CLOSE (i) preço de fechamento atual SUM (i, N) soma total do coeficiente de peso N período de suavização. Exploração A volatilidade média móvel ponderada exponencialmente é a medida mais comum de risco, mas vem em vários sabores. Em um artigo anterior, mostramos como calcular a volatilidade histórica simples. (Para ler este artigo, consulte Usando a volatilidade para avaliar o risco futuro.) Usamos os dados atuais do preço das ações da Googles para calcular a volatilidade diária com base em 30 dias de estoque de dados. Neste artigo, melhoraremos a volatilidade simples e discutiremos a média móvel ponderada exponencialmente (EWMA). Vendas históricas. Volatilidade implícita Primeiro, vamos colocar essa métrica em um pouco de perspectiva. Existem duas abordagens amplas: volatilidade histórica e implícita (ou implícita). A abordagem histórica pressupõe que o passado é o prólogo que medimos a história na esperança de que seja preditivo. A volatilidade implícita, por outro lado, ignora o histórico que resolve para a volatilidade implícita nos preços de mercado. Espera que o mercado conheça melhor e que o preço de mercado contenha, mesmo que de forma implícita, uma estimativa consensual da volatilidade. (Para leitura relacionada, veja Os Usos e Limites de Volatilidade.) Se nos concentrarmos apenas nas três abordagens históricas (à esquerda acima), eles têm dois passos em comum: Calcule a série de retornos periódicos. Aplica um esquema de ponderação. Primeiro, nós Calcule o retorno periódico. Isso geralmente é uma série de retornos diários, em que cada retorno é expresso em termos compostos continuamente. Para cada dia, tomamos o log natural da proporção dos preços das ações (ou seja, preço hoje dividido por preço ontem, e assim por diante). Isso produz uma série de retornos diários, de u i to u i-m. Dependendo de quantos dias (m dias) estamos medindo. Isso nos leva ao segundo passo: é aqui que as três abordagens diferem. No artigo anterior (Usando a volatilidade para avaliar o risco futuro), mostramos que, sob um par de simplificações aceitáveis, a variância simples é a média dos retornos quadrados: Observe que isso resume cada um dos retornos periódicos, então divide esse total pelo Número de dias ou observações (m). Então, é realmente apenas uma média dos retornos periódicos ao quadrado. Dito de outra forma, cada retorno quadrado recebe um peso igual. Então, se o alfa (a) é um fator de ponderação (especificamente, um 1m), então uma variância simples parece algo assim: O EWMA melhora a diferença simples. A fraqueza dessa abordagem é que todos os retornos ganham o mesmo peso. O retorno de ontem (muito recente) não tem mais influência na variação do que o retorno dos últimos meses. Esse problema é corrigido usando a média móvel ponderada exponencialmente (EWMA), na qual os retornos mais recentes têm maior peso na variância. A média móvel ponderada exponencialmente (EWMA) apresenta lambda. Que é chamado de parâmetro de suavização. Lambda deve ser inferior a um. Sob essa condição, em vez de pesos iguais, cada retorno ao quadrado é ponderado por um multiplicador da seguinte forma: por exemplo, RiskMetrics TM, uma empresa de gerenciamento de risco financeiro, tende a usar uma lambda de 0,94 ou 94. Neste caso, o primeiro ( Mais recente) o retorno periódico ao quadrado é ponderado por (1-0.94) (. 94) 0 6. O próximo retorno ao quadrado é simplesmente um múltiplo lambda do peso anterior neste caso 6 multiplicado por 94 5,64. E o terceiro dia anterior é igual (1-0,94) (0,94) 2 5,30. Esse é o significado de exponencial em EWMA: cada peso é um multiplicador constante (isto é, lambda, que deve ser inferior a um) do peso dos dias anteriores. Isso garante uma variação ponderada ou tendenciosa em relação a dados mais recentes. (Para saber mais, confira a Planilha do Excel para a Volatilidade dos Googles.) A diferença entre a simples volatilidade e o EWMA para o Google é mostrada abaixo. A volatilidade simples efetivamente pesa cada retorno periódico em 0.196 como mostrado na Coluna O (tivemos dois anos de dados diários de preço das ações. Isso é 509 devoluções diárias e 1509 0.196). Mas observe que a coluna P atribui um peso de 6, então 5.64, depois 5.3 e assim por diante. Essa é a única diferença entre variância simples e EWMA. Lembre-se: depois de somar toda a série (na coluna Q), temos a variância, que é o quadrado do desvio padrão. Se queremos volatilidade, precisamos lembrar de assumir a raiz quadrada dessa variância. Qual é a diferença na volatilidade diária entre a variância e EWMA no caso do Googles. É significativo: a variância simples nos deu uma volatilidade diária de 2,4, mas a EWMA deu uma volatilidade diária de apenas 1,4 (veja a planilha para obter detalhes). Aparentemente, a volatilidade de Googles estabeleceu-se mais recentemente, portanto, uma variação simples pode ser artificialmente alta. A diferença de hoje é uma função da diferença de dias Pior. Você notará que precisamos calcular uma série longa de pesos exponencialmente decrescentes. Nós não vamos fazer a matemática aqui, mas uma das melhores características do EWMA é que a série inteira se reduz convenientemente a uma fórmula recursiva: Recursiva significa que as referências de variância de hoje (ou seja, são uma função da variância dos dias anteriores). Você também pode encontrar esta fórmula na planilha e produz exatamente o mesmo resultado que o cálculo de longitude. Diz: A variação de hoje (sob EWMA) é igual a variação de ontem (ponderada por lambda) mais retorno de ônibus quadrado (pesado por um menos lambda). Observe como estamos apenas adicionando dois termos em conjunto: variância ponderada de ontem e ponderada de ontem, retorno quadrado. Mesmo assim, lambda é o nosso parâmetro de suavização. Um lambda mais alto (por exemplo, como RiskMetrics 94) indica decadência mais lenta na série - em termos relativos, teremos mais pontos de dados na série e eles vão cair mais devagar. Por outro lado, se reduzirmos a lambda, indicamos maior deterioração: os pesos caem mais rapidamente e, como resultado direto da rápida deterioração, são usados ​​menos pontos de dados. (Na planilha, lambda é uma entrada, para que você possa experimentar sua sensibilidade). Resumo A volatilidade é o desvio padrão instantâneo de um estoque e a métrica de risco mais comum. É também a raiz quadrada da variância. Podemos medir a variância historicamente ou implicitamente (volatilidade implícita). Ao medir historicamente, o método mais fácil é a variância simples. Mas a fraqueza com variação simples é que todos os retornos recebem o mesmo peso. Então, enfrentamos um trade-off clássico: sempre queremos mais dados, mas quanto mais dados temos, mais nosso cálculo é diluído por dados distantes (menos relevantes). A média móvel ponderada exponencialmente (EWMA) melhora a variação simples ao atribuir pesos aos retornos periódicos. Ao fazer isso, podemos usar um grande tamanho de amostra, mas também dar maior peso aos retornos mais recentes. (Para ver um tutorial de filme sobre este tópico, visite a Tartaruga Bionica.) Um atalho para estimar o número de anos necessários para dobrar seu dinheiro a uma determinada taxa de retorno anual (ver anual composto. A taxa de juros cobrada em um empréstimo ou realizada Em um investimento durante um período de tempo específico. A maioria das taxas de juros são. Um título de grau de investimento apoiado por um pool de títulos, empréstimos e outros ativos. Os CDOs não se especializam em um tipo de dívida. O ano em que o primeiro influxo de O capital de investimento é entregue a um projeto ou empresa. Isso marca quando o capital é. Leonardo Fibonacci era um matemático italiano nascido no século 12. Ele é conhecido por ter descoberto os quotFibonacci números, uma segurança com um preço que depende ou Derivado de um ou mais ativos subjacentes.

No comments:

Post a Comment